Kuhn-Tucker Optimality Conditions for Vector Equilibrium Problems
نویسندگان
چکیده
منابع مشابه
Enhanced Karush-Kuhn-Tucker Conditions for Mathematical Programs with Equilibrium Constraints
In this paper we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints (MPECs). We first show that MPEC-LICQ is not a constraint qualification for the strong (S-) stationary condition when the objective function is nonsmooth. Enhanced Fritz John conditions provide stronger necessary optimality conditions under weaker constraint qualifications. In...
متن کاملKuhn-Tucker-based stability conditions for systems with saturation
This note presents a new approach to deriving stability conditions for continuous-time linear systems interconnected with a saturation. The method presented here can be extended to handle a deadzone, or in general, nonlinearities in the form of piecewise linear functions. By representing the saturation as a constrained optimization problem, the necessary (Kuhn–Tucker) conditions for optimality ...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملOptimally Local Dense Conditions for the Existence of Solutions for Vector Equilibrium Problems
In this paper, by using C-sequentially sign property for bifunctions, we provide sufficient conditions that ensure the existence of solutions of some vector equilibrium problems in Hausdorff topological vector spaces which ordered by a cone. The conditions which we consider are not imposed on the whole domain of the operators involved, but just on a locally segment-dense subset of the domain.
متن کاملKarush-Kuhn-Tucker Conditions for Nonsmooth Mathematical Programming Problems in Function Spaces
Lagrange multiplier rules for abstract optimization problems with mixed smooth and convex terms in the cost, with smooth equality constrained and convex inequality constraints are presented. The typical case for the equality constraints that the theory is meant for is given by differential equations. Applications are given to L-minimum norm control problems, L∞norm minimization, and a class of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2010
ISSN: 1029-242X
DOI: 10.1155/2010/842715